IC3D 2016

Towards an Interactive Navigation in Large Virtual Microscopy Images on 3D Displays

J. Sarton¹, <u>N. Courilleau^{1,2}</u>, Y. Remion¹, L. Lucas¹

1. Université de Reims Champagne-Ardenne, CReSTIC 2. Neoxia, France

2016 December 13

Introduction	Visualization-driven pipeline	Results	Conclusion

Outline

2 Visualization-driven pipeline

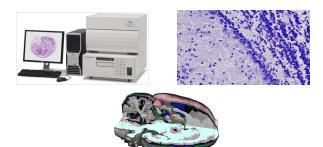
Introduction	Visualization-driven pipeline	Results	Conclusion
000			

Context

3D NeuroSecure

Collaborative solution for therapeutic innovation by high dimension complex data processing.

- Scientific visualization
- High performance computing
- Big Data Imaging
- Alzheimer disease



Introduction	Visualization-driven pipeline	Results	Conclusion
○●○	0000000000000	000	

Motivations

Virtual microscopy:

- Modern biomedical acquisition: ultra-high resolution images
 ⇒ huge volumetric data (several Tera-bytes)
 - Electron microscopy
 - Histological slides scanner
- Visualize these data and interactively navigate inside is crucial to the spatial understanding

Introduction	
000	

Visualization-driven pipeline

Results 000 Conclusion

Previous work and contributions

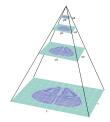
Previous works:

- Multi-resolution pyramidal navigation into a large image.
- Out-of-core GPU volume rendering on large datasets.

[Crassin et al., ACM SIGGRAPH i3D, 2009]

[Hadwiger et al., IEEE SciVis 2012]

[Openseadragon]


Contributions:

- Improve perception: 3D displays on multi-view auto-stereoscopic screens
- Interactively navigate into a whole volume

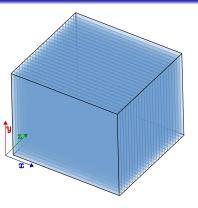
Introduction 000	Visualization-driven pipeline ●○○○○○○○○○○○○	Results 000	Conclusion
Volume da	ta representation		

The whole large volume is stocked in a large space device.

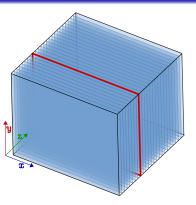
- Multi-resolution: choose the adapted level to the current screen resolution or desired level of detail.
 ⇒ Reduce the amount of data
- Bricking: Subdivides the volume into small bricks (e.g 16³ 32³).
 ⇒ Allow out-of-core approaches.

3D Mipmap

 Extension of 2D tiled pyramidal multi-resolution representation ⇒ 3D bricked multi-resolution pyramid

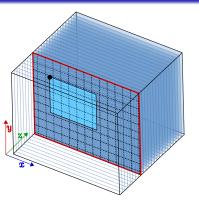


Level 0


Introduction	Visualization-driven pipeline	Results	Conclusion
	00000000000		

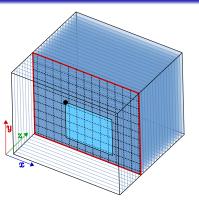
Area of interest

• Volume of data


Introduction	Visualization-driven pipeline	Results	Conclusion
	00000000000		

Area of interest

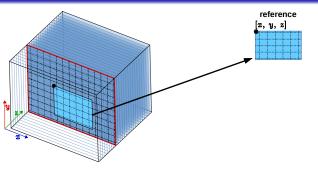
- Volume of data
- Depth navigation


Introduction	Visualization-driven pipeline	Results	Conclusion
	00000000000		

Area of interest

- Volume of data
- Depth navigation

Introduction	Visualization-driven pipeline	Results	Conclusion
	00000000000		

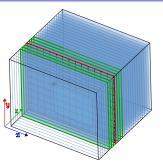


Area of interest

- Volume of data
- Depth navigation
- Pan navigation

Introduction	Visualization-driven pipeline	Results	Conclusion
000	○○○○○●○○○○○○○	000	
N /*	1		

Views selection

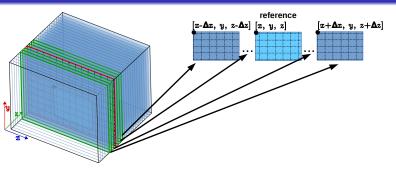


Neighboring areas selection

• Area of interest coordinate position

Introduction	Visualization-driven pipeline	Results	Conclusion
	000000000000		

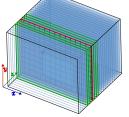
Views selection

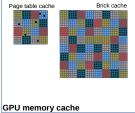


Neighboring areas selection

- Area of interest coordinate position
- Neighboring images selection

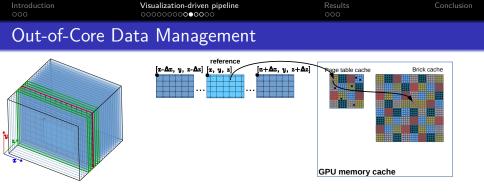
Introduction 000	Visualization-driven pipeline	Results 000	Conclusion

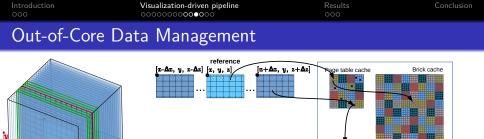

Views selection


Neighboring areas selection

- Area of interest coordinate position
- Neighboring images selection
- Δ_x for the horizontal disparity
- Δ_z for the depth perception

Introduction 000	Visualization-driven pipeline		Results 000	Conclusion
Out-of-Core	e Data Managemen	t		
	reference [x-Ax, y, z-Az] [x, y, z]	[x+Ax, 11, z+Az]	Page table cache	Brick cache

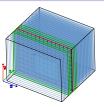


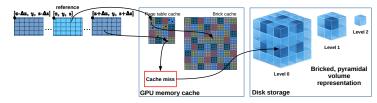

Image construction

• Multi-resolution page table hierarchy

Image construction

- Multi-resolution page table hierarchy
- Cache hit

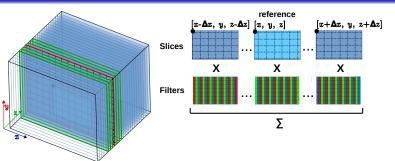

Image construction

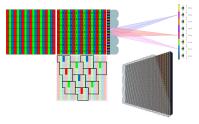

• Multi-resolution page table hierarchy

Cache miss GPU memory cache

- Cache hit
- Cache miss

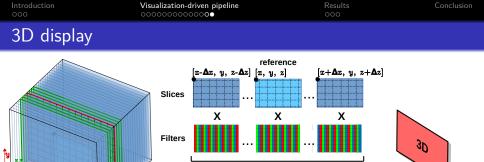
Out-of-Core Data Management

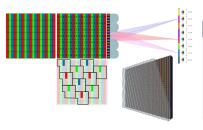



Image construction

- Multi-resolution page table hierarchy
- Cache hit
- Cache miss
- Data fetch in the CPU RAM or HDD

Introduction	Visualization-driven pipeline	Results	Conclusion
	000000000000000000000000000000000000000		


3D display

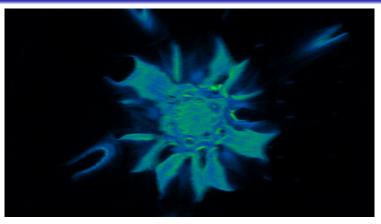


Final frame composition

- Applying multiplexing filters on the images
- Sum all images

Final frame composition

Σ

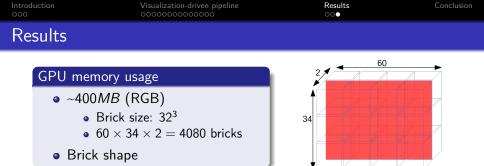

 Applying multiplexing filters on the images

Multi-view visualization on 3D display

- Sum all images
- Display it !

Introduction Visualization-driven pipeline **Results** Cor

Final frame

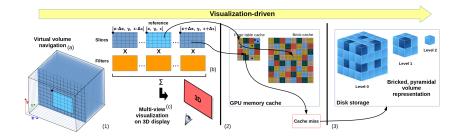


- microCT scan of a dried flower 2048³
- Display 8-views 16:10 aspect ratio 1920 \times 1200
- $[\Delta_x, \Delta_z] = [4, 1]$

Introduction 000	Visualization-driven pipeline	Results ○●○	Conclusion

8 views composition

Parameters


- Relation between Δ_z and distance between slices
- Maximum horizontal disparity Δ_x

Validation

- Statistical studies
 - Different displays
 - Different samples
 - Pool of users

Introduction	Visualization-driven pipeline	Results	Conclusion

Conclusion

Perspectives

- Proof of concept
- Scaling needs to be validated
- Statistical studies

Introduction Visualization-driven pipeline Results Conclusion

This is the end !

Thanks

Questions ?

