
VIRTUAL REVIEW OF LARGE SCALE IMAGE STACK ON 3D DISPLAY

J. Sarton1, N. Courilleau1, 2, A-S. Hérard3, T. Delzescaux3, Y. Remion1, and L. Lucas1
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ABSTRACT

Large scale images allow pathologists to perform reviews, us-
ing computer workstations instead of microscopes. This trend raises
a wide range of issues related to the management of these massive
datasets. In particular, efficient solutions for data storage and pro-
cessing have to be developed in order to deliver increasingly reliable
and faster analyses. In addition, the improvement of workflows also
requires the reinforcement of visualization capabilities. In this paper,
we present a new virtual microscopy (VM) approach for interactive-
time navigation in large images stack with 3D visualization on multi-
stereo display. Our work is based on a tool that combines 3D pyrami-
dal representation and out-of-core data management for interactive
on-demand streaming of large datasets on GPUs. The preliminary
results suggest that the proposed solution facilitates the reading and
the understanding of data essentially because they are spatialized.

Index Terms— Virtual microscopy, 3D display, Out-of-core hi-
erarchical visualization, GPU rendering.

1. INTRODUCTION

Current image-generating technologies are essential tools within
modern biology despite the large amounts of data they generate [1].
Interactive visualization of these volumetric data is essential partly
because i) our screens are only able to display a fraction of the
resolutions of large images and ii) they help to understand the three-
dimensional structures of images and determine spatial relationships
between regions of interest.

In practice, and thanks to the advances in computer technology,
the development of VM [2, 3, 4] has partially addressed this issue.
As a reminder, a VM could be defined as a system that simulates
the observation of microscopic samples on computer, by mimick-
ing a conventional microscope enabling to observe, navigate [5, 6],
and annotate virtual slides [7]. Nevertheless, Hortsch [8] notes a
drawback in such system used as a virtual microscope to study vir-
tual slides. Indeed, he reports that users of such equivalent tools
were frustrated to have only a single plane focus, and to lose three-
dimensional perception. To compensate these disadvantages, we
propose to extend visualization to 3D by using autostereoscopic dis-
play [9] in order to improve the quality of the user experience. In
addition, this extension allows the user to freely navigate – zooming
in or out – in the whole volume rather than in a single slide.

In order to reach this quality of navigation, we draw our inspira-
tion from out-of-core methods management of large volume data on
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GPU used in the context of volume visualization. Usually, in these
approaches, one creates a pyramidal level of resolutions, subdivided
into blocks of data (called bricks). The Gigavoxel approach [10],
stores the bricks in a tree structure. We rather turned to the pro-
posed method of Hadwiger et al. [11] who provide a virtual memory
approach with a multi-level, multi-resolution page table mechanism
for ray casting rendering. This approach has already been validated
by a concrete application with interactive exploration of petascale
volumes [12].

Based on this out-of-core method, we extend it to propose a
visualization-driven pipeline which generates stereoscopic multi-
view frames on GPU at interactive time from data bigger than GPU
memory.

The remainder of this paper is organized as follows. In Sec-
tion 2, a brief overview of the system is provided. In Section 3,
our visualization-driven pipeline is detailed. Issues on dataset rep-
resentation are specifically studied. Experimental results are then
presented and discussed in Section 4. Finally, conclusion is given in
Section 5.

2. MATERIALS AND METHODS

The data used in this article was obtained from a C57BL/6J mouse
brain processed to improve block-face photograph resolution com-
pared to a previous research realized on Alzheimer’s Disease [13].
The photographic volume produced was composed of block-face
images of the surface of the frozen brain taken before the cutting
process (slice thickness of 20 µm to derive histological sections not
treated in this work). Every image was recorded with a digital cam-
era (Oscar, Allied Vision). These photographs were taken at the end
of the cryostat wheel crank course, ensuring that the brain was in
the same position for all sections (x and y-axes) and at the same
distance from the camera (z-axis). A laptop was used to control the
camera, making it possible to take images remotely; the images were
stored directly on this laptop. For the processed brain, we obtained
a series of 800 blockface photographs with an in-plane resolution of
2.16 × 2.16 µm per pixel. Image processing steps was performed
using BrainVISA software (http://brainvisa.info) to reconstruct the
volume. Such 3D photographic information was proposed in many
papers to perform efficient histological 3D reconstructions based on
series of sections.

This dataset comprise a preliminary result with a 3D high res-
olution volume (far superior to MRI images) even if the precision
does not reach the one given by 3D histological data. In addition,
it provides a good overview and interesting anatomical information
(white matter – gray matter).
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Fig. 1. Visualization-driven system overview: The navigation in a virtual image stack and in a given slice (1.a) induces a streaming and a
construction stage to compose a multi-view image (1.b) that can be visualized on a multiscopic 3D display (1.c). (2) An address translation
system with a multi-level multi-resolution page table hierarchy and a caching system on the GPU. (3) A bricked multi-resolution pyramidal
representation stored on a larger space storage.

2.1. System Overview

The system we propose aims to response to the following needs by
providing i) a way to navigate interactively through a large multi-
resolution image stack, ii) a mechanism to manage very large vol-
umes of data, and iii) a visualization on 3D multi-view displays.

Based on a GPU architecture (Fig. 1), it includes a specific ap-
proach for handling datasets larger than GPU memory capabilities in
addition to ensure an interactive time navigation for the users. Re-
member that GPUs do not have a lot of memory, which implies the
use of an appropriate data structure. To overcome this limitation, a
distinct out-of-core algorithm was designed to manage datasets and
to reduce I/O bottleneck. In a preprocessing step, a bricked multi-
resolution pyramidal data representation of the volume is created
(Fig. 1.3). In addition, in order to address the entire volume, the
system uses a multi-level, multi-resolution page table hierarchy (Fig.
1.2) and a caching system to store and manage the bricks.

The user can navigate through the volume by performing one of
the following actions: i) a zoom in / out on a slide, which implies
a change of precision level in the pyramid; ii) a move on the cur-
rent slide, which means a [x, y] pan; or iii) a move in the depth of
volume which is a change of slices. As shown in figure 1, the sys-
tem was built on a visualization driven pipeline. In other words, if
one of these actions is observed, the system runs automatically the
following sequence.

First step, according to the new view position, the system cal-
culates all bricks needed to build the final multi-view image. Sec-
ond step, the system tries to get the access to the bricks in the GPU
memory (Fig. 1.2). In the case the system does not find them (cache
misses), it automatically sends asynchronous request to the CPU to
fetch them. They are either, in a simple cache in the CPU memory
or in the storage device, where the bricked multi-level volume repre-
sentation is stored (Fig. 1.3). Third step, the system creates the final
multi-view image and displays it on a 3D multi-view screen (Fig.
1.1.c).

2.2. Data representation

In order to reach an interactive time navigation (≥ 15 FPS), a well-
designed data architecture is required. The architecture used to han-
dle huge volume of data is based on the work of Hadwiger et al. [11]
who proposed a bricked pyramidal data representation also called
3D mipmap (Fig. 1.3). Rather than trying to use the whole volume,
this data representation makes possible the use of small independent

bricks (e.g., 163 or 323 voxels). However, the approach proposed
in [11] was based on a complete interactive-time pipeline, from data
acquisition to visualization, which is not the case here. Indeed, the
volume acquisition was already performed, and the construction of
the pyramid can be done outside the stream. In addition, to obtain
better performances, the data stored on the hard drive could be com-
pressed; however, since the system aims to offer a interactive-time
navigation, it implies to have an extraction algorithm with a through-
put satisfying this constraint.

The study proposed by Fogal et al. [14] gives a good overview to
choose correctly the optimal brick size. They highlight two impor-
tant points: i) it is, more efficient to use a large brick size to transfer
and store the data (e.g., 1283 or 2563); ii) for rendering, it is more
interesting to use small brick size (e.g., 323) (Sec. 4).

As a bonus, with the use of this data structure, it is possible to
apply different down-sampling ratios on each axes of the volume for
each level in the pyramidal representation. It is important to note
that acquiring biomedical data may introduce an anisotropic repre-
sentation, and this data structure can easily deal with this by applying
appropriate ratios.

3. VISUALIZATION-DRIVEN PIPELINE

3.1. Volume data construction

The navigation is performed in a virtual volume (Fig. 1.1.a) that
represents the whole stack images at the highest resolution. In this
virtual area, a 3D position representing the upper-left corner of the
section to visualize is determined. Moreover, the appropriate level
of resolution in the pyramid is chosen according to the pixel size
projection of the image in the screen space. In addition to the screen
definition, it is possible to deduce which bricks will be required to
compose the N images (N = number of view of the display) needed
to compute the multi-view image that will be displayed afterwards
(Sec. 3.3). Then, a brick request is sent to the GPU cache manager
for each of these required bricks.

In order to address the whole large volume, a virtual memory
scheme is used with an address translation mechanism. This is en-
sured directly on the GPU by a multi-level, multi-resolution page
table hierarchy. In the case where the volume is too massive, the
same concept of virtualization can be applied on the page table it-
self. To handle this data structure, two pools are created on the GPU
memory (global or texture memory), one for the page table hierar-
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chy, the other one for the data bricks (Fig. 1.2). The cache updates
are managed with an LRU policy.

Strategies can be applied when the navigation is only done
through the pyramid of resolutions (meaning a fixed camera posi-
tion) to handle a progressive loading, and preserve an interactive
rate. The available bricks of lower resolution could be used while
those from the requested level are not loaded in the GPU memory.

3.2. Views generation

To produce the image that will be displayed on the N -view au-
tostereoscopic screen, it is necessary to generate the N views and
to compose them (Sec. 3.3). These views are created according to a
reference area, which is the one the user is interested in, the one cor-
responding to the 3D position used during the virtual volume naviga-
tion. This process has a strong dependency on the display hardware
(definition and view number N ).

Let W and H be the width and the height of the display definition
respectively, and p = [xref , yref , zref ], the position of the upper-
left corner for the reference image. All the bricks covering the area
from the position [xref , yref ] to the position [xref +W, yref +H],
in the slice zref , are required to create this reference image.

The images around the reference image are selected by applying
an offset on the x-axis (noted ∆x), encoding the horizontal disparity
[16, 17] and a ∆z for the slice position. In the volume, kb slices
before and ka slices after the reference slice (zref ) are selected.
The value ka may be different from kb, depending on the number
of views of the display (e.g., if the display requires an even number
of views). In this way, the positions for the images before, with n ∈
[1; kb], are pn = [xref−n∆x, yref , zref−n∆z] and for the images
after, with n ∈ [1; ka], are pn = [xref + n∆x, yref , zref + n∆z]
(Fig. 2.a). In the same way as the reference image, all the bricks
from positions p to [p.x + W, p.y + H] in the corresponding p.z
slice are needed.

When all the previously described information are known, the
brick requests can be sent to the cache, in order to construct the
N images. Different strategies can be considered to handle cache
misses. As soon as all the required bricks of an image are present in
the cache, this image can be built while the cache is fetching missing
bricks of the other images.

This case could occur when the position of the camera changes

on the x or z-axis. Unfortunately, because all images required to pro-
duce the multi-view frame are sharing the same yref , cache misses
may happen when the camera moves on this axis. Then, there is no
other choice than waiting for all missing bricks from the cache.

Rendering quality and user interaction are improved by adding
an alpha transparency information during the pixel compositing. A
transfer function (TF) is used to determine this transparency coeffi-
cient (and eventually the color) for each intensity values. Then, to
integrate this transparency through the thickness of the N slices, an
alpha-blending computation is operated on the images.

It is possible to consider that a fully transparent brick, according
to the TF, will not be loaded into the GPU cache. This TF can be
easily updated by the user with a visualization impact in interactive
time. Indeed, a TF update will trigger the pipeline only from the
alpha-blending step since all the required bricks are already in the
cache.

3.3. 3D display

In order to obtain a valuable image, each of the N pre-build views
Vi
c(x, y) must be combined conforming to the autostereoscopic dis-

play device according to the expression:

Vfinal
c (x, y) =

∑
i

Vi
c(x, y) F i

c(x, y) with c ∈ {R,G,B}

As shown in figure 2.b, this combination is achieved by selecting
each color component of the final image in the view locally indicated
by dedicated filtering masks F i : {0, 1}3 [Z2] (specific to each 3D
display). This process can be easily implemented with a simple GPU
kernel; it consists of N [H ×W ] matrix product and a global sum.
The multiplexing filters are of the size of the display definition, and
they are always the same; so they can be loaded once on the GPU
during an initialization step.

4. RESULTS AND DISCUSSION

4.1. Memory usage

According to the following settings: a display with a H ×W screen
size, a volume with p-bytes encoded pixels and a brick size of b3

pixels, in the worst case scenario, the working-set size can be deter-
mined with: (

H

b
+ 1

)
×
(
W

b
+ 1

)
× 2× (b3 × p) (1)

With an HD 1920 × 1080 display and a volume with RGBA32
pixels, this working-set size will take ~560 MB with b = 32 and
~270 MB with b = 16. We can notice than modern GPUs memory
can easily handle this, meaning there is no need to consider strategies
for the GPU memory overflow.

Table 1 shows that bigger are the bricks better is the memory
bandwidth which is in line with the study of Fogal et al. [14] about
the brick size for the data transfers.

Their study also points out that it is interesting, in the case of
GPU volume ray-casting, to use small bricks for the renderer. In
the same way for our multi-stereoscopic frame renderer, using small
bricks provides a finer granularity on data that will be required to
build a frame and avoid the loading of unnecessary data. Thus,
the memory space used on the GPU can be optimized with smaller
bricks, as shown with equation (1). In addition, it could be interest-
ing to take in consideration the L1 cache size of the GPUs. Hence, in
order to optimize the number of cycles, it could be interesting to use
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Fig. 3. Results: Mouse brain block-face volume (~86 GB) render in ~30 ms. (a) A full large-scale slide inside an images stack. (b) The
reference images used, rebuilt from the bricks. (c) The results of 8-views frames composition with transfer function and alpha-blending.

bricks that can entirely fit in L1 cache to avoid to load / unload brick
chunks. In modern GPUs architecture the L1 cache has a size of 24
- 48 kB, it induces to take in consideration the use of 163 bricks
(16 kB).

To conclude, it would be better to use a rebricking strategy in
order to handle large bricks for data transfers and small bricks in the
GPU cache for the renderer. An other idea could be to use non-cubic
bricks and to link the brick size to the sizes and views the display
requires (e.g., [x, y, z] = [256, 128, 32]).

Brick Size
(RGBA32)

Disk → CPU
(µs)

CPU → GPU
(µs)

Bandwidth
CPU → GPU

163 944 204 78.4MB/s
323 1 488 246 532.5MB/s
643 6 945 376 2.6GB/s
1283 31 970 867 9.2GB/s

Table 1. Per-brick load and transfer time analysis according to the
brick dimensions. The samples were taken using a computer with the
following specs: Intel i7 6700HQ @ 2.6GHz, Geforce GTX960M
and an SSD in PCIe

4.2. Time analysis

Table 1 illustrates the time needed to fetch a brick from the disk
to GPU. As expected, loading a brick from the disk is significantly
more time consuming than loading it from the CPU memory. Fortu-
nately, this time is taken in consideration only if a requested brick is
not present in our GPU cache and not present in the CPU cache.

Furthermore, the transfer time does not count during the frame
creation time. When a brick is missing, the system raises an asyn-
chronous request to fetch it and try to compute the frame by using
bricks from lower resolutions. The time to build one multi-view
frame is ~30ms, it considers the selection and the composition of the
views required for the multi-view frame, alpha blending and multi-
plexing. This processing time depends on the size of the output 3D
screen and the number of views that compose it. It is not affected by
the size of the bricks or the selected zooming level.

These times validate the navigation and visualization at an inter-
active rate (~30 FPS) on volumes that exceeds GPU memory. We
can talk about output-sensitive algorithms since render time is di-
rectly linked to the size of the output (the screen) and not to the size
of the input (the image stack).

4.3. 3D visualization perception

The figure 3 shows two multi-view frames computed for an HD
(16:10) autosteroscopic 8-views display, with a volume of 5520 ×
7000× 800 RGBA32 pixels and [∆x,∆z] = [4, 1].

The choices for the values of ∆x and ∆z were made in order to
maximize the perceived depth. The tests highlight the fact that the
physical distance between two slices needs to be considered in the
choice of the value ∆z . In one case, with a large distance between
slices, whatever the value of ∆z , the visualization is not smooth. In
the other case, a very short gap combined to a too small ∆z do not
provide the feeling to move in the depth of the volume. In the same
way, using a high value for ∆x cause a major visual discomfort in
addition to a non-desired blur effect.

Thus, the objective to merge the concept of Deep Zoom applied
on a 3D volume displayed on a multiscopic display was conclusive
and a real depth effect can be observed. However, the perception
was only visually assessed by the authors and cannot be considered
as sufficient. A rigorous statistical study on a large sample of users
is required. In order to increase the quality of the system, the study
should focus on the feedback of a pool of users, on their perceptions
on multiple samples with different settings.

5. CONCLUSION

In this article we introduced a proof of concept to virtualize a mi-
croscope on autostereoscopic displays. To achieve this, we propose
a visualization driven pipeline based on a GPU rendering using a
multilevel, multiresolution data structure in order to create a multi-
view frame. Thanks to this architecture, the user is able to perform
an interactive navigation through multiresolution images of massive
datasets.
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